Development of a Microfluidic Platform to Investigate Effect of Dissolved Gases on Small Blood Vessel Function

نویسندگان

  • Oren Zeev Kraus
  • Meghan Sauve
  • Sascha Pinto
چکیده

In this thesis I present a microfluidic platform developed to control dissolved gases and monitor dissolved oxygen concentrations within the microenvironment of isolated small blood vessels. Dissolved gas concentrations are controlled via permeation through the device substrate material using a 3D network of gas and liquid channels. Dissolved oxygen concentrations are measured on-chip via fluorescence quenching of an oxygen sensitive probe embedded in the device. Dissolved oxygen control was validated using the on-chip sensors as well as a 3D computational model. The platform was used in a series of preliminary experiments using olfactory resistance arteries from the mouse cerebral vascular bed. The presented platform provides the unique opportunity to control dissolved oxygen concentrations at high temporal resolutions (<1 min) and monitor dissolved oxygen concentrations in the microenvironment surrounding isolated blood

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic platform for probing small artery structure and function.

Although pathologic changes to the structure and function of small blood vessels are hallmarks of various cardiovascular diseases, limitations of conventional investigation methods (i.e. pressure myography) have prohibited a comprehensive understanding of the underlying mechanisms. We developed a microfluidic device to facilitate assessment of resistance artery structure and function under phys...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' ...

متن کامل

Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function.

We present a compact microfluidic platform for the automated, multimodal assessment of intact small blood vessels. Mouse olfactory artery segments were reversibly loaded onto a microfluidic device and kept under physiological (i.e., close to in vivo) environmental conditions. For immunohistochemical endpoint protein analysis, automated on chip fixation and staining of the artery eliminated the ...

متن کامل

Effect of magnesium on prevention of diabetic vessel complication (review article)

Introduction: Magnesium is the second intracellular and fourth common action in the body. Magnesium deficit has been described in patients with type I diabetes. Hypomagnesemia can also be the cause for some clinical diseases such as diabetes. Some researches showed that plasma magnesium level decreases after diabetes induction. Some research believed that magnesium deficiency is a risk factor f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012